
Large Linear Multi-output Gaussian

Process Learning

Vladimir Yurivich Feinberg

A Thesis

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Bachelor of Science in Engineering

Department of Computer Science

Advisers

Professor Kai Li

Professor Barbera Engelhardt

June 2017

c© Copyright by Vladimir Yurivich Feinberg, 2017.

All rights reserved.

Abstract

Gaussian process (GP) models, which put a distribution over arbitrary functions

in a continuous domain, can be generalized to the multi-output case; a common

way of doing this is to use a linear model of coregionalization [2]. Such models

can learn correlations across the multiple outputs, which can then be exploited to

share knowledge across the multiple outputs. For instance, temperature data from

disparate regions over time can contribute to a predictive weather model that is more

accurate than the same model applied to a single region. While model learning can

be performed efficiently for single-output GPs, the multi-output case still requires

approximations for large numbers of observations across all outputs. In this work,

we propose a new method, Large Linear GP (LLGP), which estimates covariance

hyperparameters for multi-dimensional outputs and one-dimensional inputs. Our

approach learns GP kernel hyperparameters at an asymptotically faster rate than the

current state of the art. When applied to real time series data, we find this theoretical

improvement is realized with LLGP being generally an order of magnitude faster

while improving or maintaining predictive accuracy. Finally, we discuss extensions

of our approach to multidimensional inputs.

iii

Acknowledgements

I would like to thank my two advisers, Professors Kai Li and Barbara Engelhardt,

for their consistent guidance throughout the research process. Both advisers had a

crucial role in taking the project into a promising direction, and both also helped

me maintain course to a successful outcome. In addition, Li-Fang Cheng also played

a formative role in this work: she has helped me conduct my experiments and also

advised me during the course of my research.

The Princeton University Computer Science Department also graciously offered

time and space in several senses; first, the department reserved a location for se-

niors like myself to have a dedicated work environment, and second, the department

provided computational resources on which I could perform validation experiments.

Finally, I’d like to mention Jeffrey Dwoskin, whose publicly available Princeton

LATEX template spared me many headaches in manual typesetting.

iv

Contents

Abstract . iii

Acknowledgements . iv

List of Tables . viii

List of Figures . ix

1 Introduction 1

1.1 Motivation . 1

1.1.1 Applications . 2

1.1.2 Lack of Existing Methods . 4

1.2 Gaussian Processes . 6

1.2.1 Single-output Gaussian Processes 6

1.2.2 Multiple-output Gaussian Processes 7

1.3 Contributions . 8

1.4 Outline . 9

2 Related Work 11

2.1 Hierarchical Approaches . 12

v

2.1.1 Linear Conjugate Gradients 12

2.1.2 Tree-structured Kernels . 12

2.1.3 Tree-structured Covariance . 13

2.1.4 Inappropriateness of Tree-based Methods for LMC 14

2.2 Inducing Points . 14

2.2.1 A New Graphical Model . 15

2.2.2 Collaborative Multi-output Gaussian Processes 16

2.3 Interpolation Points . 17

2.3.1 Structured Covariance Matrices 17

2.3.2 Structured Kernel Interpolation 18

2.3.3 Massively Scalable Gaussian Processes 18

3 Methods 19

3.1 Matrix-free GP Learning . 19

3.2 Computing the Gradient . 20

3.3 Fast MVMs and Parsimonious Kernels 23

3.3.1 sum: Sum Representation . 25

3.3.2 bt: Block-Toeplitz Representation 25

3.3.3 slfm: SLFM Representation 26

3.3.4 Asymptotic Performance . 26

3.4 Stopping Conditions . 27

4 Results 29

4.1 Implementation Details . 29

vi

4.1.1 Hyperparameter Settings . 29

4.2 Representation Evaluation . 30

4.3 Foreign Exchange Rate Prediction . 35

4.4 Weather Dataset . 36

5 Conclusion 39

5.1 Discussion . 39

5.2 Future Work . 40

Bibliography 41

vii

List of Tables

4.1 Comparison of kernel representations 31

4.2 Financial exchange predictive performance 36

4.3 Weather predictive performance comparison 37

viii

List of Figures

1.1 Climate modeling with GPs . 3

1.2 Variational kernel foreign exchange prediction 4

1.3 Single versus Multi-GP for tide prediction 5

3.1 MINRES iteration count trace . 22

3.2 Rolling maximum norm cutoff . 28

4.1 Gradient error over different kernels 32

4.2 Inversion time disparity over different kernels 33

4.3 Inversion error over different kernels 34

4.4 Financial exchange prediction . 36

4.5 Weather prediction . 38

ix

Chapter 1

Introduction

1.1 Motivation

Gaussian processes (GPs) are a popular nonlinear regression method that innately

capture function smoothness across inputs as defined by their covariance function

[29]. GPs seamlessly extend to multi-output learning, picking up on latent cross-

output processes, where in multi-output learning the objective is to build a proba-

bilistic regression model over vector-valued observations.

The covariance kernel describes the interaction between data points: data points

that are closer together (as specified by a higher kernel value at that pair) will

have expected values for regressor variables that are closer together [25]. A multiple

output GP behaves much like a single-output one, where in addition to the input

features we add a tag indicating which output the data point is associated to. In this

way, a multi-output GP learns multiple regressions at once, aided by learning the

1

cross-covariance across outputs—this typically results in an improvement in accuracy

[2].

This multi-output extension of GPs deserves careful attention. First, the depar-

ture from a single-output setting makes GP modeling typical approaches tractable,

so alternate methods need to be developed. Second, there are a variety of use cases

that benefit from efficient methods to apply the multi-output extension to GPs.

1.1.1 Applications

Multiple-output GPs appear in a variety of contexts, demonstrating the need for

efficient model learning. Faster training times will enable researchers to explore

more models.

Genton and Kleiber discuss the use of multi-output GPs in geostatistics [11].

They review several kernels with different cross-covariance models and their applica-

bility to multivariate statistical analysis for prediction related to geographic events

(Figure 1.1). The authors describe the linear model of coregionalization, the focus

of our work, as a popular yet restrictive cross-covariance model [11].

Multi-output GPs are found in finance as well. Just like in geostatistics, com-

plicated interactions between several variables over time can be model led with ease

by relying on statistical characterizations through realistic covariance functions. For

instance, foreign exchange and commodity data can be used to re-create artificially

removed values the value of other commodities over time (Figure 1.2). We will revisit

this example in our work.

2

Figure 1.1: This is Figure 1, replicated from Genton and Kleiber’s analysis of cross-
covariance functions in geostatistics [11]. Here, the authors depict residuals for av-
erage summer temperature and precipitation prediction for the year 1989, which are
outputs whose regression is simultaneously learned in a multi-output GP climate
model. Units in the left and right diagrams are degrees Celsius and centimeters,
respectively.

With the growing Internet of Things and large sensor network deployments, one

may find use cases for GPs in data imputation with error bars and outlier detection,

as GPs offer a probabilistic model. Again, the use of multi-output GPs is crucial,

since information used across sensors can detect when data for a particular sensor is

misleading (Figure 1.3).

As a final indicator of the utility of multi-GPs, we turn the reader’s attention to

medical diagnostics. Such models are used to both impute and predict lab covariates

for medical patients—these predictions can in turn allow earlier and more accurate

diagnosis of diseases such as sepsis [6].

3

50 100 150 200 250
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

(a) CAD
50 100 150 200 250

7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4
x 10

−3

(b) JPY
50 100 150 200 250

0.7

0.75

0.8

0.85

0.9

0.95

(c) AUD

Figure 1.2: This is Figure 4, replicated from Alvarez et al, depicting two foreign
currency exchanges CAD and JPY and a precious metal commodity AUD [1]. Test
data was held out in these indices, and training data included other indices which are
not shown. True values are dotted, multi-output GP predictions are solid, and a two
standard deviation error bar is greyed out. The GP learning method used here relies
on inducing points, which form an approximation for the real GP model by sampling
the covariance kernel at the inducing points, depicted as crosses on the horizontal
axis. Notice the AUD reconstruction indicates that a multiple-output approach may
have predictive power.

1.1.2 Lack of Existing Methods

Medical covariate prediction was particularly inspiring for this project, since it dealt

with multi-output GP model learning at a large scale with many data points [6].

With each patient needing their own model, the bottleneck in the research pipeline

was training GP models under various different Bayesian prior configurations. This

work hopes to address use cases such as this one, where training multi-output GPs

is the bottleneck.

In particular, we will focus on a specific family of multi-output GPs, but nonethe-

less one that has found frequent use in the literature; namely, the linear model of

4

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

Time (days)

T
id

e
H

ei
g

h
t

(m
)

Chimet − Independent GP

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

Time (days)

T
id

e
H

ei
g

h
t

(m
)

Chimet − Multi−output GP

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

Time (days)

T
id

e
H

ei
g

h
t

(m
)

Bramblemet − Independent GP

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

Time (days)

T
id

e
H

ei
g

h
t

(m
)

Bramblemet − Multi−output GP

Figure 1.3: We replicate Figure 3 from Osborne et al, who demonstrate the increased
accuracy from a single-output GP to a multi-output one in predicting tide heights
over time from two sensors Bramblemet and Chimet on the south coast of England
[22]. The solid black line represents the actual held-out data, the dots represent the
training data. The blue line is the expectation from the GP model and the grey
shaded region is the 2 standard deviation error bar.

coregionalization. Even this simple cross-covariance model violates stationarity, a

key kernel property usually exploited for fast training in single-output GPs.

Falling back to an exact GP model comes at a cost: to compute the gradients for

kernel hyperparameters, an exact computation requires an O(n3) decomposition of

an O(n2) matrix in memory for n samples [25]. Each hyperparameter’s scalar partial

derivative then requires another O(n2) computation. While these operations may be

performed in parallel, the memory use and runtime is prohibitive for problems with

a large number of outputs, since the number of hyperparameters grows accordingly.

For this reason, an accurate but fast approximate approach has been an important

goal of machine learning research.

5

1.2 Gaussian Processes

1.2.1 Single-output Gaussian Processes

First, we give an overview of the theoretical foundation for GPs. A GP is a set

of marginally normal random variables (RVs) {fx}x indexed by x ∈ X , with the

property that for any finite collection X ⊂ X , the RVs are jointly Gaussian with a

prescribed mean function µ : X → R and covariance function (kernel) K : X 2 → R,

i.e., fX ∼ N (µX , KX,X) [29]. K is parameterized by a set of parameters θ; in

sections of our work where we would like to emphasize a particular parameterization

we will use K|θ. As usual, we drop the mean with y , fX − µX . We introduce the

notation vectorization fX =
(
fx

)
x∈X

or matricization KX,Z =
(
K(x, z)

)
x∈X,z∈Z

with subscripts.

Given a set of n observations at eachX of the Rn-valued RV y, the aforementioned

model assumes:

y ∼ N(0, KX,X).

For a fixed index ∗ ∈ X of and corresponding R-valued RV y∗, we have a correspond-

ing property: y

y∗

 ∼ N

0,

KX,X KX,∗

K∗,X K∗,∗




If we fix a particular set of observations of y at X, then inference of y∗ at any query

index ∗ is performed by marginalization [25]:

y∗|y ∼ N
(
K∗,XK

−1
X,Xy, K∗,∗ −K∗,XK−1

X,XKX,∗
)
.

6

Accuracy is often sensitive to a particular parameterization of our kernel, so model

estimation is performed by maximizing data log likelihood with respect to parameters

θ of K:

L(θ) = log p(fX |X,θ) (1.1)

= −1
2y>K−1

|θ y− 1
2 log

∣∣∣K|θ∣∣∣− n

2 log 2π.

As such, the heart of GP learning lies in optimization of L. Gradient-based opti-

mization methods then require the gradient with respect to every parameter θj using

α , K−1
|θ y:

∂θj
L = 1

2α>∂θj
K|θα− 1

2 tr
(
K−1
|θ ∂θj

K|θ
)
. (1.2)

1.2.2 Multiple-output Gaussian Processes

We build multi-output GP models as instances of general GPs, where a multi-output

GP model identifies correlations between outputs through a shared input space [2].

Here, for D outputs, we write our indexing set as X ′ = [D] × X : an input is

in a point from a shared domain coupled with an output tag. Then, if we make

observations at Xd ⊂ X for each individual output d ∈ [D], we can set the global set

of inputs across all the outputs in our multiple regression as:

X = {(d, x) | d ∈ [D], x ∈ Xd} ⊂ X ′; n = |X| .

7

An LMC kernel K is of the form

K([i,xi], [j,xj]) =
Q∑
q=1

b
(q)
ij kq(‖xi − xj‖) + εiδij, (1.3)

where kq : R → R is a stationary kernel on X . Typically, the positive semi-definite

(PSD) matrices Bq ∈ RD×D formed by b(q)
ij are parameterized as AqA>q + κqID, with

Aq ∈ RD×Rq ,κq ∈ RD
+ and Rq a preset rank. The entries of these matrices as well as

domain-specific parameters of each kq comprise the parameter vector θ.

Importantly, even though each kq is stationary, K is only stationary on X ′ if

Bq is Toeplitz. Settings of Bq that arise in practice, where we wish to capture

covariance across outputs as an arbitrary D2-dimensional latent process, are not

Toeplitz. Therefore, these matrices prevent stationarity in K and therefore prohibit

direct application of typical methods of accelerating GP learning, such as structured

kernel interpolation.

1.3 Contributions

Variational approaches that work on m � n inducing points, or locations at which

the true kernel is sampled, let users trade off accuracy for efficiency [17].

Nguyen and Bonilla observed in Collaborative Multi-output Gaussian Processes

(COGP) that multi-output GP algorithms can further share an internal represen-

tation of the covariance structure among all outputs at once [21]. We analogously

exploit sharing in the covariance structure.

8

Our approach makes the following contributions to approximate inference in

multi-output GPs. First, we identify a block-Toeplitz structure induced by the lin-

ear model of coregionalization (LMC) kernel on a grid. Next, we adapt a previously

identified kernel structure based on Semiparametric Latent Factor Models (SLFM)

to the multi-output setting [27]. Both of these structures coordinate for fast matrix-

vector multiplication Ky with the covariance matrix K, which we demonstrate has

better asymptotic complexity for ∇L. Moreover, these guarantees are realized in

practice.

When inputs do not lie on a uniform grid (i.e., for time series, the length of time

between observations differs), we apply a technique proposed in Massively Scalable

Gaussian Processes (MSGP) [30]. For single-output kernels, MSGP leverages the

structured kernel interpolation (SKI) framework to make inputs act as if they are on

a grid [32]. In a single-output case, this opens up the possibility for a matrix-free GP,

avoiding construction of the explicit Gram covariance matrix. Because LMC kernels

exhibit the previously-identified block-Toeplitz structure, they harmonize with SKI.

While direct application of SKI is not possible, we can make an extension that makes

matrix-free LMC kernel learning viable even on non-grid inputs.

1.4 Outline

This work is organized as follows. The next section, Section 2, gives an extensive

overview of currently available methods for GPs. We will review hierarchical con-

structions (Section 2.1), which we describe as not viable for multi-output GPs. Next,

9

we provide an overview of inducing point approaches (Section 2.2), which are useful

for understanding the methods that we build upon and those that are an essential

background to the current state-of-the-art multi-output GP method, COGP. Finally,

we cover interpolating point approaches in Section 2.3, which are also essential pre-

requisites for our method.

Section 3 then describes the LLGP model learning method in detail and Section 4

provides its performance on both synthetic and real benchmarks. In particular,

Section 4.3 compares LLGP to COGP on financial data for foreign exchange returns

in 2007 and Section 4.4 compares LLGP to COGP on weather data imputation.

Finally, we conclude in Section 5, discussing the implications of our work and

future directions to explore.

10

Chapter 2

Related Work

Gaussian Process (GP) model learning is the procedure of modifying the kernel

hyperparameters θ to maximize the data log likelihood (Equation 1.1). Sometimes,

hyperpriors to the parameters θ are added, so that maximizing the data log likelihood

becomes a problem of maximizing the posterior density. Even with such additions,

the likelihood, Equation 1.1, and the expression for its gradients, Equation 1.2,

require the n× n matrix inversion K−1
|θ y, where n is the number of data points, K|θ

is the kernel with the current hyperparameters, and y are the output observations.

We review existing approaches for approximations of the likelihood L, which

accelerate GP learning because at each step in the GP log likelihood optimization

the approximations to the terms in the two aforementioned equations take less time

and space to compute.

11

2.1 Hierarchical Approaches

2.1.1 Linear Conjugate Gradients

Hierarchical approaches, like the interpolating approaches that will be explored in

Section 2.3, build off a method for solving linear systems with large matrices.

In the context of GPs, Gibbs and MacKay noticed that it suffices to solve the

linear system K|θz = y for z in an iterative manner, through successive matrix-

vector multiplications (MVMs) with by the matrix K|θ [12]. The authors used lin-

ear conjugate-gradient (LCG) descent to solve the linear system. LCG has several

amiable properties. First, its stability implies that even with increasing error over

iterations through an approximation of the Gram matrix, LCG will converge to a

solution of desired accuracy [26].

In effect, LCG reduces the problem of covariance matrix inversion to finding a

sparse representation of K|θ that is fast to multiply with. In the case of [12], the

benefits of LCG were convincing enough that it was used with dense matrices.

As put by briefly by [28], the k-th iteration of LCG yields a minimizer of∥∥∥y−K|θz
∥∥∥2

with z constrained to the subspace span{z0, K|θz0, · · · , Kk
|θz0}, where

z0 is some initial guess. With exact arithmetic, this would converge in n iterations,

since K|θ is non-singular and the span of the n-th subspace would be Rn.

2.1.2 Tree-structured Kernels

Tree-structured kernels operate by assuming that the kernel k is stationary and

decreasing as the distance between points gets larger. Then, the matrix entries of

12

the kernel are fully determined by the pairwise Euclidean distance matrix induced

by the data points.

Tree-structured kernel approaches build KD trees [28]; this type of work can be

traced back to a general approach of kernel density estimation using dual trees [15].

The KD tree is built over the input space [28]. Each node of the KD tree carries

a centroid representing the subtree. The i-th element of K|θz, ∑n
j=1 k(xi,xj)zj, can

then be computed by a smaller weighted sum ∑
k k(xi, ck)z′k from centroids ck and an

induced weighing z′. The centroids and weighing chosen to represent the dataset are,

critically, selected to be close to the point xi. Here, we see the stationarity assumption

at work—the adaptive kd-tree structure finds a vicinity of xi, and chooses many

centroids near there, but the contribution of points far away from xi are more crudely

summarized by fewer centroids. Altogether, we get an accurate reconstruction of the

kernel for stationary kernels that also decrease as the distance between the points

the kernel is being evaluated on increases.

2.1.3 Tree-structured Covariance

Along a similar vein, one form acceleration directly speeds up the computation of the

inverse matrix by applying hierarchical inversion methods. For matrices of the form

σ2I+K for low-rank K that are also Hierarchical Off-Diagonal Low-Rank (HODLR)

n × n matrices of logarithmic depth, which are formed by common kernels, can be

inverted in O(n log2 n) time [3].

13

2.1.4 Inappropriateness of Tree-based Methods for LMC

Unfortunately, in the LMC context, the kernel (Equation 1.3) is not stationary. On

the subspace of the input between two fixed outputs, it is stationary if all component

kernels kq are. In this case, one could apply these approximations to matrix blocks

corresponding to stationary subspaces.

Nonetheless, neither KD-methods nor HODLR directly apply. We can explain

the failure of these methods on more complex multi-output or non-stationary kernels

kernels by noting the efficacy of these methods depends on the extent to which

summaries of points (entries in the Gram matrix) far away from a query point are

accurate representations for their whole cluster. In other words, these methods tacitly

require a monotonic, isotropic, and fairly smooth kernel [20]:

α1k(x∗,x1) + α2k(x∗,x2) ≈ (α1 + α2)k
(

x∗,
x1 + x2

2

)

Even for a single-output GP with a periodic, stationary kernel such as k(x, z) =

sin exp−‖x− z‖2 the above does not hold.

2.2 Inducing Points

To cope with the lack of tractable GP inference methods, inducing point approaches

create a tractable model to use instead of the classic GP. Such approaches fix or

estimate inducing points U and claim that the data fX is conditionally deterministic

(deterministic training conditional, or DTC), independent (fully independent train-

14

ing conditional, or FITC), or partially independent (partially independent training

conditional, or PITC) given random variables (RVs) fU [23]. These approaches are

agnostic to kernel stationarity, and their quality can be improved by increasing the

number of inducing points at the cost of a longer runtime. Setting the inducing

points U = X recovers the original exact GP.

2.2.1 A New Graphical Model

In a review paper, Quiñonero-Candela and Rasmussen define sparse approximation

methods over GPs as methods which make a conditional independence assumption

over the training and test GP function values [23]:

p(f∗, fX) ≈ q(f∗, f) = Eu (q(f∗|u)q(fX |u))

Here, u is a latent rv, with u ∼ N (0, KU,U) for a set U of values, called inducing

points, where m = |U | is usually smaller than |X|. Assumptions additional to the

conditional independence above determine the inducing point method.

Taking q(·|u) = N (K·,uK−1
U,Uu, diag (K·,· −Q·,·) with QX,Z = KX,UK

−1
U,UKU,Z for

· replaced with both f∗ and fX gives rise to the FITC prior. It is equivalent to using

the kernel:

k(xi,xj) =


k(xi,xj) i = j

Qxi,xj
o/w

Using the exact kernel for the diagonal maintains covariance rank. This is im-

portant to make sure that the span of basis functions for our GP is sufficiently large;

15

otherwise, our GP may not be expressive enough (it would only have the rank of

KU,U) [23].

In effect, the smaller latent space of u is used to represent the covariances. In

our context, the shared X ′ space looks tempting to use for u, but it doesn’t contain

enough information to capture cross-covariances between the multiple outputs, and

will require some modification.

In the single output context, for m inducing points, the MVM is reduced to an

O(nm2) operation, and storage decreases to O(nm) from n2.

Other inducing point approaches are either similar to FITC, such as the partially

independent conditional or the sparse multiscale GP. Furthermore, some use other

inducing-point methods, such as sparse spectrum Gaussian Processes (SSGP), but

these require stationarity [24].

2.2.2 Collaborative Multi-output Gaussian Processes

By sharing the m inducing points across all outputs, Collaborative Multi-output

Gaussian Processes (COGP) improves runtime per iteration to O(m3). Moreover,

COGP only requires O(Dnm) memory [21]. To ensure that O(m3) is computation-

ally tractable for COGP, m must be sufficiently small. COGP makes large multi-

output GP estimation feasible through a variational approximation, the evidence

lower bound, to the log likelihood.

16

2.3 Interpolation Points

2.3.1 Structured Covariance Matrices

If we can identify structure in the covariance matrices K, then we can recover fast

in-memory representations and efficient matrix-vector multiplications (MVMs) for

finding products Kz, which will prove to be the fundamental computational opera-

tion of GP inference.

The Kronecker product A ⊗ B of matrices of order a, b is a block matrix of

order ab with ij-th block AijB. We can represent it by keeping representations of

A and B separately, rather than the product. Then, the corresponding MVMs can

be computed in time O(aMVM(B) + bMVM(A)), where MVM(·) is the runtime of

a MVM. For GPs on uniform dimension-P grids, this approximately reduces the

runtime and representation costs by a (1/P)-th power [13].

Symmetric Toeplitz matrices T are constant along their diagonal and fully deter-

mined by their top row {T1j}j, yielding an O(n) representation. Such matrices arise

naturally when we examine the covariance matrix induced by a stationary kernel k

applied to a one-dimensional grid of inputs. Since the difference in adjacent inputs

ti+1 − ti is the same for all i, we have the Toeplitz property that:

T(i+1)(j+1) = k(|ti+1 − tj+1|) = k(|ti − tj|) = Tij

Furthermore, we can embed T in the upper-left corner of a circulant matrix C of twice

its size, which enables MVMs C

x

0

 =

Tx

0

 in O(n log n) time. This approach has

17

been used for fast inference in single-output GP time series with uniformly spaced

inputs [7].

2.3.2 Structured Kernel Interpolation

SKI abandons the inducing-point approach: instead of using an intrinsically sparse

model, SKI approximates the original KX,X directly [32]. To do this efficiently, SKI

relies on the differentiability of K. For x, z within a grid U , |U | = m, and Wx,U ∈

R1×m as the cubic interpolation weights [19], |Kx,z −Wx,UKU,z| = O(m−3). The

simultaneous interpolation W , WX,U ∈ Rn×m then yields the SKI approximation:

KX,X ≈ WKU,UW
>. Importantly, W has only 4dn nonzero entries, with X = Rd.

2.3.3 Massively Scalable Gaussian Processes

Massively Scalable Gaussian Processes (MSGP) observes that the kernel KU,U on

a grid exhibits Kronecker and Toeplitz matrix structure [30]. Drawing on previous

work on structured GPs [7, 13], MSGP uses linear conjugate gradient descent as a

method for evaluating K−1
|θ y efficiently for Equation 1.1. In addition, [31] mentions

an efficient eigendecomposition that carries over to the SKI kernel for the remaining

log
∣∣∣K|θ∣∣∣ term in Equation 1.1.

While evaluating log
∣∣∣K|θ∣∣∣ is not feasible in the LMC setting (because the LMC

sum breaks Kronecker and Toeplitz structure), the general notion of creating struc-

ture with SKI carries over to LLGP.

18

Chapter 3

Methods

We propose a linear model of coregionalization (LMC) method based on recent

structure-based optimizations for Gaussian Process (GP) estimation instead of vari-

ational approaches. Critically, the accuracy of the method need not be reduced

by keeping m low because its reliance on structure allows better asymptotic per-

formance. For simplicity, our work focuses on multi-dimensional outputs, one-

dimensional inputs, and Gaussian likelihoods.

3.1 Matrix-free GP Learning

As discussed in Section 2.1.1, Gibbs and MacKay describe the algorithm for GP

model learning in terms of only matrix-vector multiplications (MVMs) with the co-

variance matrix [12]. Critically, we cannot access L itself, only ∇L, so we choose

AdaDelta as the high-level optimization routine [33]. Algorithm 1 summarizes the

high-level operation of LLGP.

19

Algorithm 1 The content corresponding to each line is detailed below. X ⊂ [D]×R
is the set of inputs, tagged by the output that they correspond to, and limited for
simplicity to the one-dimensional case. Then y ⊂ R is the corresponding set of
outputs. AdaDeltaUpdate is the update function for AdaDelta—we abstract
away auxiliary AdaDelta variables.

1: procedure LLGP(α,X,y)
2: θ ← θ0 . Initialization; Section 4.1
3: gmax = −∞
4: repeat
5: Construct a linear operator K̃|θ from X,y,θ. . MVM operator
6: g ← ∇θLK̃|θ

. Gradients from an operator, Algorithm 2
7: θ ← AdaDeltaUpdate(θ, g)
8: gmax = max(‖g‖ , ‖gmax‖)
9: until ‖g‖ ≤ αgmax . Cutoff; Section 3.4

10: return θ
11: end procedure

For every given θ, we construct an operator K̃|θ in Line 5 of Algorithm 1. This

operator is built so that it approximates MVM with the true kernel; i.e., K|θz ≈ K̃|θz.

However, we make an approximation such that the multiplication is fast. This is

discussed in Section 3.3.

Since L is continuously differentiable, its gradient under an approximation of the

kernel is approximately the gradient of the parameters with respect to the exact ker-

nel. Using only the MVM operation, we compute the gradient of the log-likelihood,

discussed in Section 3.2.

3.2 Computing the Gradient

Given an operator K|θ enabling matrix-vector multiplication with a positive definite

kernel, we find ∇L of Equation 1.2, replicated below. Recall that θj is the j-th term

20

of the kernel parameters θ, α = K−1
|θ y, and y are the observed outputs.

∂θj
L = 1

2α>∂θj
K|θα− 1

2 tr
(
K−1
|θ ∂θj

K|θ
)
.

To compute any inverse K−1
|θ z, we depart from Gibbs and MacKay in selecting

MINRES instead of LCG as the Krylov-subspace inversion method used to compute

inverses from MVMs. MINRES handles numerically semidefinite matrices with more

grace [10]. This is essential in GP optimization, where the diagonal noise matrix

ε, iid for each output, shrinks over the course of learning, making inversion-based

methods require additional iterations (Figure 3.1).

To compute the trace term in Equation 1.2, we rely on Gibbs and MacKay’s

stochastic approximation by introducing the random variable r with cov r = I:

tr
(
K−1
|θ ∂θj

K|θ
)

= E
[
(K−1
|θ r)>∂θj

K|θr
]

[12]. (3.1)

For this approximation, the number of samples need not be large, and the estimate

improves as the size of K|θ increases. As in other work [8], we let r ∼ Unif{±1}.

If we sample Nt instances of r, every iteration needs to perform Nt + 1 inversions

including y, if we reuse the same samples K−1
|θ r between derivatives ∂θj

. These

inversions are done in parallel. Then, since ∂θj
K|θ is both structured and smaller than

K|θ, we can perform MVMs with the matrix operator ∂θj
K|θ efficiently. Altogether,

Line 11 of Algorithm 2 requires Õ(n) time to compute; this goes for the entire inner

loop of between lines 8 and 14 for finding ∂θj
L. This procedure is summarized in

Algorithm 2.

21

0 5 10 15 20 25 30 35
optimization iteration

0

500

1000

1500

2000

2500

3000

in
ve

rs
io

n
ite

ra
tio

ns

minres MVMs
iterartion cutoff (n= 3054)

Figure 3.1: Number of MVMs that MINRES must perform at each optimization
iteration for a GP applied to the dataset in Section 4.3. The iteration cutoff is the
number of training points n in the dataset.

Overall, the work is bottlenecked in the inversions K−1
|θ r, K−1

|θ y, which in turn

rely through MINRES on the MVM operation, discussed in Section 3.3. Since K|θ

only enters computation as an MVM operator, the amount of memory consumed is

dictated by its representation, which need not be dense.

22

Algorithm 2 Given a linear MVM operator for a kernel, we compute the gradient of
its data log likelihood. Nt is a fixed parameter for our stochastic trace approximation.
The output of this procedure is ∇L. MINRES(K, z) computes K−1z.

1: procedure Gradient(K, y)
2: R← {ri}Nt

i=1, sampling r ∼ Unif{±1}.
3: for z in {y} ∪R, in parallel do
4: Store the result of MINRES(K, z) as K−1z.
5: end for
6: Let α = K−1y; computed before.
7: g ← 0
8: for θj in θ do . Compute ∂θj

L
9: Create the operator L = ∂θj

K|θ
10: {si}Nt

i=1 ← {L(ri)}Nt

i=1
11: t← 1

Nt

∑Nt
i=1

(
K−1
|θ ri

)
· si . t approximates the trace term of Equation 3.1

12: r ← α · L(α)
13: gj ← 1

2r −
1
2t . Equation 1.2

14: end for
15: return g
16: end procedure

3.3 Fast MVMs and Parsimonious Kernels

When LMC kernels are evaluated on a grid of points for each output, so Xd = U , the

simultaneous covariance matrix equation without noise Equation 3.2 over U holds

for Toeplitz matrices Kq formed by the stationary kernels kq evaluated at pairs of

U × U .

KU,U =
∑
q

(AqA>q + diag κq)⊗Kq (3.2)

The SLFM and COGP models correspond to all κq set to 0 and Aq = aq ∈ RD×1.

Moreover, we include D additional kernels for the independent GP components,

23

which can be incorporated using kernels Kd where Ad = 0 and κd as the dth standard

basis vector of RD for d ∈ [D]. This shows a reduction from SLFM to LMC.

Recall Structured Kernel Interpolation (SKI) from Section 2.3.2 as a method of

recovery of structure on unstructured inputs. In order to adapt SKI to our context

of multiple outputs, we build grid U ⊂ X ′ out of a common subgrid U ⊂ X that

extends to all outputs with U = [D]× U . Since the LMC kernel evaluated between

two sets of outputs KXi,Xj
is differentiable, as long as U contains (in the sense of

range) each {Xd}d∈[D], the corresponding SKI approximation KX,X ≈ WKU,UW
>

holds with the same asymptotic convergence cubic in 1/m.

We build a corresponding approximation for the differentiable part of our kernel:

KX,X ≈ WKU,UW
> + ε. (3.3)

We cannot fold ε into the interpolated term KU,U since it does not correspond to a

differentiable kernel, so the SKI approximation fails. But this fact does not prevent

efficient representation or multiplication since the matrix is diagonal. In particular,

the MVM operation KX,Xx can be approximated by WKU,UW
>x+εx, where matrix

multiplications by the sparse matrices ε,W,W> require O(n) space and time.

We consider different representations of KU,U from Equation 3.3 to reduce the

memory and runtime overhead for performing the multiplication KU,Uz (where we

have computed z = W>x).

24

3.3.1 sum: Sum Representation

In sum, we represent KU,U with a Q-length list. At each index q, Bq is a dense

matrix of order D and Kq is a Toeplitz matrix of order m, where only its top row

needs to be represented to perform MVMs.

In turn, multiplication KU,Uz is performed by multiplying each matrix in the list

with z and summing the results:

KX,Xx ≈ WKU,uW
>x + εx = W

∑
q

(
(AqA>q + diag κq)⊗Kq

)
z + εx

As described before, the Kronecker MVM (Bq ⊗ Kq)z may be expressed as D fast

Toeplitz MVMs with Kq and m dense MVMs with Bq. In turn, the runtime for each

of the Q terms is O(Dm logm).

3.3.2 bt: Block-Toeplitz Representation

In bt, we notice that KU,U is a block matrix with blocks Tij:

∑
q

Bq ⊗Kq =
(
Tij

)
i,j∈[D]2

, Tij =
∑
q

b
(q)
ij Kq.

On a one-dimensional grid U , these matrices are Toeplitz since they are linear com-

binations of Toeplitz matrices. bt requires D2 m-sized rows to represent each Tij.

Then, using usual block matrix multiplication, an MVM KU,Uz takes O(D2m logm)

time.

25

3.3.3 slfm: SLFM Representation

slfm uses a rank-based representation. Let R ,
∑

q
Rq/Q be the average added rank,

R ≤ D.

We first rewrite the grid kernel:

KU,U =
∑
q

Rq∑
r=1

a(r)
q a(r)

q

> ⊗Kq +
∑
q

diag κq ⊗Kq.

Note a(r)
q a(r)

q

> is rank-1. Under some re-indexing q′ ∈ [RQ] which flattens the double

sum such that each q′ corresponds to a unique (r, q), the term ∑
q

∑Rq

r=1 a(r)
q a(r)

q

>⊗Kq

may be rewritten as

∑
q′

aq′a>q′ ⊗Kq′ = A blockdiagq′

(
Kq′

)
A>;

where the second simplification has A =
(

aq′

)
q′
⊗ Im with

(
aq′

)
q′

a matrix of

horizontally stacked column vectors [27]. Next, we rearrange the remaining term∑
q diag κq ⊗Kq as blockdiagd(Td), where Td = ∑

q κqdKq is Toeplitz.

Thus, the slfm representation writes KU,U as the sum of two block diagonal

matrices of block order QR and D, where each block is a Toeplitz order m matrix,

so MVMs take O((QR +D)m logm) time.

3.3.4 Asymptotic Performance

Because the runtimes of bt and slfm are complimentary in the sense that one

performs better than the other when D2 > QR and vice-versa, an algorithm that

26

uses the aforementioned condition between to decide between which representation

to use can minimize runtime. We also found that sum is efficient in practice for

Q = 1.

Using the switching condition, MVMs with the original matrix KX,X altogether

have a space and time upper bound of Õ(min(QR,D2)m+n), where the min is earned

thanks to the choice between different representations. Every AdaDelta iteration

then takes Õ(√κ2) such matrix-vector products for machine-precision answers, with

κ2 the spectral condition number [26].

On a grid of inputs with X = U, the SKI interpolation vanishes with W = I.

In this case, using bt alone leads to a faster algorithm—applying the Chan block-

Toeplitz preconditioner in a Krylov-subspace based routine has experimentally shown

convergence using fewer MVMs [5].

3.4 Stopping Conditions

For a gradient-only stopping heuristic, we maintain the running maximum gradient

∞-norm. This is described explicitly in Algorithm 1. If gradient norms drop below

a preset proportion of the running maximum norm more than a pre-set tolerance

number of times, we terminate. For example, when applied to the foreign exchange

rate prediction dataset in Section 4.3, the heuristic eventually notices that we have

slowed down increases in L because the gradients occasionally drop below the thresh-

old at that point, while not displacing the solution θ significantly since we must be

near a local minimum (Figure 3.2).

27

0 5 10 15 20 25 30 35

−3000

−2000

−1000

0

1000

lo
g

lik
el

ih
oo

d

0

1000

2000

3000

4000

5000

6000

7000

gr
ad

 n
or

m
s

raw norms
min grad cutoff

Figure 3.2: In green, we have 20% of the rolling maximum norm. In red and blue
are L (computed exactly and therefore unavailable during benchmarks) and ‖∇L‖∞,
respectively.

28

Chapter 4

Results

We evaluate the methods on held out data by using standardized mean square error

(SMSE) of the test points with the predicted mean, and the negative log predictive

density (NLPD) of the Gaussian likelihood of the inferred model. Notably, NLPD

takes confidence into account, while SMSE only evaluates the mean prediction. In

both cases, lower values represent better performance.

4.1 Implementation Details

4.1.1 Hyperparameter Settings

AdaDelta parameters were set to the following on all tests: rate = 1, decay = 0.9,

momentum = 0.5, offset = 0.0001. The stopping criterion parameters permit the

gradient ∞-norm to drop below a threshold of its maximum value so far a small,

fixed number of times, 5. The maximum number of iterations was 100.

29

For learning, we initialize entries Aq according to a unit normal and all κq to 1.

Note that COGP initializes the coregionalization matrix to 1 uniformly. Like COGP,

we initialize noise to 0.1 for all outputs.

LLGP was implemented in Python 3 from the Anaconda, which offered an Intel

MKL-linked scipy [18]. The code made heavy use of other packages, namely climin

[4], GPy [14], and paramz [34]. Code and benchmarks are available at https://

github.com/vlad17/runlmc.

Application of our approach to all replication studies was carried out on a large

server in a multi-programming environment: CentOS 6.5 with 80 Intel(R) Xeon(R)

CPU E7-4870 @ 2.40GHz. The representation evaluation benchmarks were done at

once on a cluster of machines running CentOS 5.2-5.9 with Intel(R) Xeon(R) CPU

E5430 @ 2.66GHz, where these jobs ran on a single thread per CPU.

4.2 Representation Evaluation

We evaluated the performance of the different kernel representations over various

rank and parameterization settings. In particular, we have the following parameters:

n total sample size across all outputs, D number of outputs, Q number of kernels kq,

R average added rank, ε mean noise, and ktype kernel type. Kernel type is one of

mat, periodic, rbf, mix corresponding to Matérn-3/2, standard periodic1, and

radial basis functions. mix refers to a mix of all three kernels.

Each kernel’s inverse length scales and periods were selected by sampling uni-

formly in log space from 1 to 10 with Q samples. Next, we construct a random
1We define the periodic kernel as k(r) = exp

(−γ
2 sin2 πr

T

)
.

30

https://github.com/vlad17/runlmc
https://github.com/vlad17/runlmc

LMC kernel by sampling entries of each Aq from a standard normal distribution, κq

from an inverse gamma with unit shape and scale, and independent noise ε for every

output from an inverse gamma with unit scale and mean ε. Inputs and outputs were

independently generated from Unif[0, 1] for benchmarking.

As expected from their asymptotic runtime, sum, bt, and slfm representations

are complimentary in matrix-vector multiplication (MVM) speed for different con-

figurations of D,R,Q—this results in sparse inversion computation that consistently

outperforms Cholesky decomposition in runtime (Table 4.1). For inverting systems,

all computations were carried out until the residual `2 norm was at most 10−4.

Table 4.1: The runtime in seconds for solving Kx = y for a random kernel K
constructed as in Section 4.2 using MINRES for each of the kernel representations.
For comparison, the chol representation is wallclock time to compute the Cholesky
decomposition of the matrix, which must be constructed, and use this decomposition
to invert the system. We averaged over five runs. In every run, we use n = 5000
simulated data points, mix kernels, and ε = 0.1.

D R Q cholesky sum bt slfm

2 2 10 40.45 40.04 8.28 45.07
10 1 10 37.60 34.51 21.93 9.86
10 10 1 9.59 0.42 2.42 0.90

We next evaluated the accuracy of the gradients for Nt = 10 trace samples.

Fixing R = 3, n = 5000, D = 10, we quantified the accuracy and speed of computing

∇L. Since, for each partial derivative, LLGP requires only Nt n-sized vector dot

products (Equation 3.1), it generally runs faster than the exact approach (Figure 4.2),

which must compute a matrix-matrix dot product (Equation 1.2). The gradients

between the two, however, are virtually indistinguishable for smooth kernels that

31

induce diagonally dominant covariance matrices (Figure 4.1). Kernels such as the

single Matérn or periodic kernel with noise on the order of 10−4 lead to less accurate

gradients, owing to poor MINRES convergence in the inversions (Figure 4.3). We

will show that the stochastic gradients suffice for optimization in practical examples.

0.0 -1.0 -2.0 -3.0 -4.0

10

5

1

3.92

12.29

rbf

0.0 -1.0 -2.0 -3.0 -4.0

10

5

1 -0.53

9.54

periodic

0.0 -1.0 -2.0 -3.0 -4.0

10

5

1

0.37

9.24

matern

0.0 -1.0 -2.0 -3.0 -4.0

10

5

1

0.64

12.29

mix

0

2

4

6

8

10

12

log10ε

Q

negative log relative error in |∇|2

Figure 4.1: Negative logarithm of the relative error in `2 norm between exact and
LLGP gradients. Higher is better, and extremal values are noted. For each data
point, the average was taken over five runs.

32

0.0 -1.0 -2.0 -3.0 -4.0

10

5

1

0.33

2.76

rbf

0.0 -1.0 -2.0 -3.0 -4.0

10

5

1 0.32

3.00

periodic

0.0 -1.0 -2.0 -3.0 -4.0

10

5

1 0.14

2.14

matern

0.0 -1.0 -2.0 -3.0 -4.0

10

5

1

0.51

2.46

mix

0.0

0.5

1.0

1.5

2.0

2.5

3.0

log10ε

Q

log ratio in cholesky to LLGP gradient runtime

Figure 4.2: Logarithm of the ratio of time required by the exact approach to that of
LLGP for computing the gradient over all parameters from Equation 1.2. Higher is
better, and extremal values are noted. For each data point, the average was taken
over five runs.

33

0.0 -1.0 -2.0 -3.0 -4.0

10

5

1

10.61

19.84

rbf

0.0 -1.0 -2.0 -3.0 -4.0

10

5

1

6.6814.42

periodic

0.0 -1.0 -2.0 -3.0 -4.0

10

5

1

0.68

15.34

matern

0.0 -1.0 -2.0 -3.0 -4.0

10

5

1

1.00

19.84

mix

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

log10ε

Q

negative log relative error in |K−1y|2

Figure 4.3: Negative logarithm of the relative error in `2 norm between exact and
MINRES solutions to Kx = y for x. For each data point, the average was taken
over five runs.

34

4.3 Foreign Exchange Rate Prediction

We replicate the medium-sized dataset from COGP as an application to evaluate

LLGP performance. The dataset consists of ten foreign currency exchange rates—

CAD, EUR, JPY, GBP, CHF, AUD, HKD, NZD, KRW, and MXN—and three pre-

cious metals—XAU, XAG, and XPT—implying that D = 13.2 As in COGP, we

retrieved the asset to USD rate, then used its reciprocal in all the results discussed

below. The LLGP setting has Q = 1, R = 2, as recommended in [1] for LMC models

on this dataset; let this be the LMC model on LLGP. COGP roughly corresponds

to the the SLFM model, which has a total of 94 hyperparameters, compared to 53

for LLGP. All kernels are RBF.

The data used in this example are from 2007, and include n = 3054 training

points and 150 test points. The test points include 50 contiguous points extracted

from each of the CAD, JPY, and AUD exchanges.

For this application, LLGP uses m = n/D = 238 interpolating points. We use

the COGP settings from the paper.3 LLGP, for both LMC, outperforms COGP in

terms of predictive mean and variance estimation as well as runtime (Table 4.2).

2Data are from http://fx.sauder.ubc.ca/data.html
3COGP hyperparameters for FX2007 were 100 inducing points, 500 iterations, 200 mini-batch

size.

35

http://fx.sauder.ubc.ca/data.html

Table 4.2: Average predictive performance and training time over 10 runs for LLGP
and COGP on the FX2007 dataset. Parenthesized values are standard error. LLGP
was run with LMC set to Q = 1, R = 2, and 238 interpolating points. COGP used
a Q = 2 kernel with 100 inducing points.

Metric LLGP COGP

seconds 64 (8) 296 (2)
SMSE 0.21 (0.01) 0.26 (0.03)
NLPD -3.62 (0.07) 14.52 (3.10)

0 50 100 150 200 250

0.85

0.90

0.95

1.00

1.05

1.10

output CAD (95%)

0 50 100 150 200 250
0.0080

0.0082

0.0084

0.0086

0.0088

0.0090

0.0092

output JPY (95%)

0 50 100 150 200 250

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950
output AUD (95%)

Figure 4.4: Test outputs for the FX2007 dataset. COGP mean is black, with 95%
confidence intervals shaded in grey. LLGP mean is a solid red curve, with light
green 95% confidence intervals. Magenta points are in the training set, while blue
ones are in the test set. Notice LLGP variance corresponds to an appropriate level
of uncertainty on the test set and certainty on the training set, as opposed to the
uniform variance from COGP.

4.4 Weather Dataset

Next, we replicate results from a weather dataset, a large time series used to validate

COGP. In this dataset, D = 4 weather sensors Bramblemet, Sotonmet, Cambermet,

and Chimet record air temperature over five days in five minute intervals, with some

dropped records due to equipment failure. Parts of Cambernet and Chimet are

36

dropped for imputation, yielding n = 15789 training measurements and 374 test

measurements.

We use the COGP parameters that were set by default in the code provided by

the authors.4 LLGP was run with the same parameters as in FX2007, simulating the

SLFM model. We tested LLGP models on different numbers of interpolating points

m.

Table 4.3: Average predictive performance and training time over 10 runs for LLGP
and COGP on the weather dataset. Parenthesized values are standard error. Both
LLGP and COGP trained the SLFM model. We show LLGP with 500 and 1000
interpolating points and COGP with 200 inducing points.

Metric LLGP
m = 500

LLGP
m = 1000 COGP

seconds 60 (14) 259 (62) 1380 (12)
SMSE 0.09 (0.01) 0.09 (0.01) 0.08 (0.00)
NLPD 2.14 (0.58) 1.54 (0.03) 98.48 (1.30)

LLGP performed slightly worse than COGP in SMSE, but both NLPD and run-

time indicate significant improvements (Table 4.3). Varying the number of interpo-

lating points m from 500 to 1000 constructs a tradeoff frontier between increases in

m and NLPD decrease at the cost of additional runtime (Figure 4.5). While NLPD

improvement diminishes as m increases, LLGP is still an improvement compared to

COGP for a range of m by an order of magnitude in runtime and almost two orders

of magnitude for NLPD.

4https://github.com/trungngv/cogp, commit 3b07f621ff11838e89700cfb58d26ca39b119a35.
The weather dataset was run on 1500 iterations, mini-batch size 1000.

37

https://github.com/trungngv/cogp

500 600 700 800 900 1000
interpolating points m

1.6

1.8

2.0

2.2

2.4

2.6

NL
PD

50

100

150

200

250

300

ru
nt

im
e

(s
)

Figure 4.5: Average and standard error of NLPD and runtime of the SLFM model
on LLGP across over varying interpolating points. Every setting was run 10 times.

38

Chapter 5

Conclusion

5.1 Discussion

LLGP recovers speedups from Structured Kernel Interpolation for the problem of

multi-output GP regression by recognizing structure unique to linearly coregionalized

kernels, and otherwise not necessarily recoverable in general multi-output kernels.

This structure further enables a parsimonious representation that allows even large

GPs to be learned without explicit construction of the covariance matrix.

LLGP provides a means to approximate the log-likelihood function gradients

through interpolation. We have shown on several datasets that this can be done in

a way that is faster and leads to more accurate results than variational approxima-

tions.

39

5.2 Future Work

We considered several stochastic approximations for finding log
∣∣∣K|θ∣∣∣ [9, 16], but

found these too slow and inaccurate for use in optimization; however, further inves-

tigation may prove fruitful, and would enable a more precise stopping condition.

Other future work would extend the inputs to accept multiple dimensions. This

can be done without losing internal structure in the kernel [30]: Toeplitz covariance

matrices become block-Toeplitz with Toeplitz-blocks (BTTB). The cubic interpo-

lation requires and exponential number of terms, so projection into lower dimen-

sions learned in a supervised manner would be essential. Another useful line for

investigation would be more informed stopping heuristics. Finally, an extension to

non-Gaussian noise is also feasible in a matrix-free manner by following prior work

[8].

40

Bibliography

[1] Mauricio Alvarez, David Luengo, Michalis Titsias, and Neil D Lawrence. Effi-
cient multioutput Gaussian processes through variational inducing kernels. In
AISTATS, volume 9, pages 25–32, 2010.

[2] Mauricio Alvarez, Lorenzo Rosasco, Neil Lawrence, et al. Kernels for vector-
valued functions: A review. Foundations and Trends R© in Machine Learning,
4(3):195–266, 2012.

[3] Sivaram Ambikasaran, Daniel Foreman-Mackey, Leslie Greengard, David W
Hogg, and Michael O’Neil. Fast direct methods for gaussian processes. arXiv
preprint arXiv:1403.6015, 2014.

[4] J. Bayer, C. Osendorfer, S. Diot-Girard, T. RÃĳckstiess, and Sebastian Urban.
climin - a pythonic framework for gradient-based function optimization. http:
//github.com/BRML/climin, 2016.

[5] Tony Chan and Julia Olkin. Circulant preconditioners for toeplitz-block matri-
ces. Numerical Algorithms, 6(1):89–101, 1994.

[6] Li-Fang Cheng, Gregory Darnell, Corey Chivers, Michael Draugelis, Kai Li, and
Barbara Engelhardt. Sparse multi-output gaussian processes for medical time
series prediction. arXiv preprint arXiv:1703.09112, 2017.

[7] John Cunningham, Krishna Shenoy, and Maneesh Sahani. Fast Gaussian process
methods for point process intensity estimation. In 25th international conference
on Machine learning, pages 192–199. ACM, 2008.

[8] Kurt Cutajar, Michael Osborne, John Cunningham, and Maurizio Filippone.
Preconditioning kernel matrices. In ICML, pages 2529–2538, 2016.

[9] Sebastian Dorn and Torsten Enßlin. Stochastic determination of matrix deter-
minants. Physical Review E, 92(1):013302, 2015.

41

http://github.com/BRML/climin
http://github.com/BRML/climin

[10] David Fong and Michael Saunders. CG versus MINRES: an empirical compari-
son. SQU Journal for Science, 17(1):44–62, 2012.

[11] Marc Genton and William Kleiber. Cross-covariance functions for multivariate
geostatistics. Statistical Science, 30(2):147–163, 2015.

[12] Mark Gibbs and David MacKay. Efficient implementation of Gaussian processes,
1996.

[13] Elad Gilboa, Yunus Saatçi, and John Cunningham. Scaling multidimensional
inference for structured Gaussian processes. IEEE transactions on pattern anal-
ysis and machine intelligence, 37(2):424–436, 2015.

[14] GPy. GPy: A Gaussian process framework in python. http://github.com/
SheffieldML/GPy, since 2012.

[15] Alexander Gray and Andrew Moore. Nonparametric density estimation: Toward
computational tractability. In 2003 SIAM International Conference on Data
Mining, pages 203–211. SIAM, 2003.

[16] Insu Han, Dmitry Malioutov, and Jinwoo Shin. Large-scale log-determinant
computation through stochastic Chebyshev expansions. In ICML, pages 908–
917, 2015.

[17] James Hensman, Nicolò Fusi, and Neil D Lawrence. Gaussian processes for
big data. In Twenty-Ninth Conference on Uncertainty in Artificial Intelligence,
pages 282–290. AUAI Press, 2013.

[18] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python, 2001–. [Online; accessed 2017-02-06].

[19] Robert Keys. Cubic convolution interpolation for digital image processing. IEEE
transactions on acoustics, speech, and signal processing, 29(6):1153–1160, 1981.

[20] Iain Murray. Gaussian processes and fast matrix-vector multiplies. In Numer-
ical Mathematics in Machine Learning Workshop-International Conference on
Machine Learning ICML 2009, 2009.

[21] Trung Nguyen, Edwin Bonilla, et al. Collaborative multi-output Gaussian pro-
cesses. In UAI, pages 643–652, 2014.

42

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

[22] Michael Osborne, Stephen Roberts, Alex Rogers, Sarvapali Ramchurn, and
Nicholas Jennings. Towards real-time information processing of sensor network
data using computationally efficient multi-output Gaussian processes. In 7th
international conference on Information processing in sensor networks, pages
109–120. IEEE Computer Society, 2008.

[23] Joaquin Quiñonero-Candela and Carl Rasmussen. A unifying view of sparse ap-
proximate Gaussian process regression. Journal of Machine Learning Research,
6(Dec):1939–1959, 2005.

[24] Joaquin Quiñonero-Candela, Carl Rasmussen, AnÃbal Figueiras-Vidal, et al.
Sparse spectrum gaussian process regression. Journal of Machine Learning Re-
search, 11(Jun):1865–1881, 2010.

[25] Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced
lectures on machine learning, pages 63–71. Springer, 2004.

[26] Vikas Raykar and Ramani Duraiswami. Fast large scale Gaussian process re-
gression using approximate matrix-vector products. In Learning workshop, 2007.

[27] Matthias Seeger, Yee-Whye Teh, and Michael Jordan. Semiparametric latent
factor models. In Eighth Conference on Artificial Intelligence and Statistics,
2005.

[28] Yirong Shen, Andrew Ng, and Matthias Seeger. Fast gaussian process regression
using kd-trees. Advances in neural information processing systems, 18:1225,
2006.

[29] Christopher Williams and Carl Rasmussen. Gaussian processes for regression.
Advances in neural information processing systems, pages 514–520, 1996.

[30] Andrew Wilson, Christoph Dann, and Hannes Nickisch. Thoughts on massively
scalable Gaussian processes. arXiv preprint arXiv:1511.01870, 2015.

[31] Andrew Wilson, Elad Gilboa, John Cunningham, and Arye Nehorai. Fast kernel
learning for multidimensional pattern extrapolation. In Advances in Neural
Information Processing Systems, pages 3626–3634, 2014.

[32] Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable struc-
tured Gaussian processes (kiss-gp). In 32nd International Conference on Ma-
chine Learning, pages 1775–1784, 2015.

43

[33] Matthew Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[34] Max Zwiessele. paramz. https://github.com/sods/paramz, 2017.

44

https://github.com/sods/paramz

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.1.1 Applications
	1.1.2 Lack of Existing Methods

	1.2 Gaussian Processes
	1.2.1 Single-output Gaussian Processes
	1.2.2 Multiple-output Gaussian Processes

	1.3 Contributions
	1.4 Outline

	2 Related Work
	2.1 Hierarchical Approaches
	2.1.1 Linear Conjugate Gradients
	2.1.2 Tree-structured Kernels
	2.1.3 Tree-structured Covariance
	2.1.4 Inappropriateness of Tree-based Methods for LMC

	2.2 Inducing Points
	2.2.1 A New Graphical Model
	2.2.2 Collaborative Multi-output Gaussian Processes

	2.3 Interpolation Points
	2.3.1 Structured Covariance Matrices
	2.3.2 Structured Kernel Interpolation
	2.3.3 Massively Scalable Gaussian Processes

	3 Methods
	3.1 Matrix-free GP Learning
	3.2 Computing the Gradient
	3.3 Fast MVMs and Parsimonious Kernels
	3.3.1 sum: Sum Representation
	3.3.2 bt: Block-Toeplitz Representation
	3.3.3 slfm: SLFM Representation
	3.3.4 Asymptotic Performance

	3.4 Stopping Conditions

	4 Results
	4.1 Implementation Details
	4.1.1 Hyperparameter Settings

	4.2 Representation Evaluation
	4.3 Foreign Exchange Rate Prediction
	4.4 Weather Dataset

	5 Conclusion
	5.1 Discussion
	5.2 Future Work

	Bibliography

