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Introduction



About Me

P17 COS + SML

w/ Kai: 3D CNN for
MRI segmentation
for connectome
reconstruction

2017

2018 2019

ML Sys PhD
Berkeley RISE Lab
w/ lon, Joey, Mike

Model-based Deep RL
MudJoCo (w/ Sergey)

Dropped out for startup!

Sisu Data w/ Peter Bailis
Efficient DB cubing w/ FDR
control via custom
distributed lasso engine

Google Brain — GDM

Optimizer work w/ Elad

Inference-efficient LLMs
Flash Pretraining Lead

2021 2022

4. .
Google Cerebra G e m I n I

Quantizing Ads DNN
for pCTR serving
efficiency




What This Talk Will Be About

e Classic Scaling
o Basic methodologies for pre-training large language
models (LLMs)
o Foundational lessons learned in the field
e Inference-Optimized Scaling
o How the above methodologies interact with practical
serving needs.
o Basic roofline methodology, but without sharding



What This Talk Won’t Be About

e Specialized capabilities research
o image/audio/video in/out
o long context

e Thinking or post-training

e Evals



Presumed Background Knowledge

e Language modelling concepts, decoder-only transformers
e Distributed computing

E.g., from level from previous papers read:
DeepSeek-V3 Technical Report, DeepSeek-Al et al., 2024 https://arxiv.org/abs/2412.19437

GSPMD: General and Scalable Parallelization for ML Computation Graphs, Yuanzhong Xu et al., 2021,
https://arxiv.org/abs/2105.04663

Disclaimer: borrowing some amazing slides from fantastic co-workers,
Jean-Baptiste Alayrac, Sebastian Borgeaud, and Jacob Austin


https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2105.04663
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Classical Scaling



If | give you a certain amount of compute C (e.g. 1000
H100 for 30 days), what is the best LLM you can train?

What should be its size (=N)?
How many tokens (=D) should it be trained on?



If | give you a certain amount of compute C (e.g. 1000
H100 for 30 days), what is the best LLM you can train?

What should be its size (=N)?
How many tokens (=D) should it be trained on?

Note: for a transformerC = 6 * N * D is avery good approximation
of FLOPs.*

*Excluding self-attention, an N-parameter decoder-only model requires 6N matmul FLOPs per token seen (2N for forward and 4N for
backward), because each matmul performs one multiplication and one addition per pair of input values, and the backward pass
includes two matmuls for each one in the forward pass.



How many FLOPs in each training step?

MLPs

The MLPs of a transformer typically consist of 2 input matmuls that are element-wise combined and a
single output matmul:

operation train FLOPs params
A[B,T, D) Wiu[D, F] 6BTDF DF
A[B,T,D] - Win2|D, F) 6BTDF DF

o (Ain) B, T, F) * Aina|B,T,F]  O(BTF)

A[B,T, F] - W,u[F, D) 6BTDF DF

~ 18BTDF 3DF

Attention

For multi-headed attention, let us assume equal head dimension H for Q,K,V projections, and estimate
the cost of the QKVO matmuls:

operation train FLOPs params

A[B,T,D)-Wy[D,N,H] 6BTDNH DNH
A[B,T,D|-Wg|[D,N,H] 6BTDNH DNH
A[B,T,D]-Wy|D,N,H] 6BTDNH DNH

A[B,T,N,H]-Wo[N,H,D] 6BTDNH DNH

24BTDNH 4DNH

Attention

MLP

X We W, W, W,
|
‘ symbol | dimension
©O— ©O— B batch
o o o L number of layers
Q K v T sequence length (query)
o | esnn S sequence length (key value)
Ly \% vocab
y D d_model, embedding dimension
e F MLP hidden dimension
5°ﬁ‘"'ax 3 H attention head dimension
ST N number of query heads
5o The dot-product attention operation is more subtle, effectively beinga T'H - H.S matmu
batched over the B, K dimensions, a softmax, and a TS - S H matmul again batched o
norm o B, K dimensions. We highlight the batched dims in blue:

Inl Wh\Z WOUL

operation train FLOPs

Ql .T, ,G,7]-K[ ,S, ,7] 6BTSKGH =6BTSNH
softmaxg L[B,T, S, K,G)|
s[ ,T,5, ,G-V] ,5, ,H] 6BTSKGH =6BTSNH

~ 12BTSNH = 12BT*NH

Adding these up, we get 18BTDF + 24BTDNH = é * BT * (3DF+4DNH) =
6 * num tokens * parameter count (or 2 * ... for forward pass)

Audience Q: What About MoEs? Why not Attn?



Why do we ask ourselves this question?

ML training before

e Maybe 2 stages; toy problem for iteration (CIFAR10) then you apply to Imagenet

e LR searches by doing multiple “final runs”.
o The last data point is our test set!

Now every next run requires extrapolation.
Analysis made in the context of a parameterized LLM training
recipe!

Must already have architecture scaling, schedule defined for N, D.
Loss forecast implies model/recipe selection capability!



Scaling Laws

Kaplan et al (2020)1a1 showed that for autoregressive transformers, the performance of
much larger models is accurately predicted by a series of smaller models.

Test Loss
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Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding



Scaling Laws

Given a fixed compute budget C, what is the optimal combination of (N, D) ?

4.2

3.9

—— L=(D/5.4-10%3)70:09

5.6

—— L=(N/8.8-1013)70076

4.8
& 3.6
. 4.0
S
§ Sl 3.2
F 3
3.0
2.4
L= (Cyy/2.3- 108)~P=0
9 ' . . ' 2.7 . . : . .
1079 1077 1075 1073 1071 10! 108 109 105 107 109
Compute Dataset Size Parameters

PF-days, non-embedding

tokens

non-embedding

“Maximally compute-efficient training would therefore be far more sample efficient than one
might expect based on training small models to convergence, with data requirements
growing very slowly as D ~ C%? with training compute.”

Their findings: With a 10x compute budget, parameters should increase by
5.37x and the amount of data by 1.86x.



Scaling Laws

Their findings: With a 10x compute budget, parameters should increase by 5.37x and the
amount of data by 1.86x.

Consequences for the industry: We should heavily invest in scaling the model size
rather than the data size!

The catch:
- These “laws” are only empirical,
- The fitting of these laws depends a lot on the experimental setup as well as the
implicit assumptions being made there.



Chinchilla paper from GDM , (March 2022)
@ DeepMind

Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*

*Equal contributions

Challenges one assumption from the Kaplan paper: Kaplan et al. run a single training run
per model size and uses intermediate losses to estimate the loss at different token horizon.

Chinchilla paper: This is a bad approximation as you can get much better losses through
proper learning rate decay. Only the final loss value is optimal.

Let’s look together the consequences!



The IsoFlops approach

One of the 3 approaches in the paper

IsoFlops: Fix flops and vary model size and training tokens - N_ (C)andD___(C)

opt (



The IsoFlops approach

1. Fix atarget FLOPs budget

2. Train a few models, vary model size



The IsoFlops approach
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The IsoFlops approach
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1. Fix atarget FLOPs budget

2. Train a few models, vary model size
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The IsoFlops approach

now N

Fix a target FLOPs budget
Train a few models, vary model size
Fit a parabola and find the minimum

Repeat 1-3 for various FLOPs budgets
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The IsoFlops approach

1. Fix a target FLOPs budget
Train a few models, vary model size

Fit a parabola and find the minimum

» w N

Repeat 1-3 for various FLOPs budgets
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The IsoFlops approach

1. Fix atarget FLOPs budget

2. Train a few models, vary model size

3. Fit a parabola and find the minimum
4. Repeat 1-3 for various FLOPs budgets
5. Fitapower law between FLOPs

budget and optimal model size

Parameters
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The IsoFlops approach

1. Fix atarget FLOPs budget

2. Train a few models, vary model size

3. Fit a parabola and find the minimum

4. Repeat 1-3 for various FLOPs budgets

5. Fitapower law between FLOPs
budget and optimal model size

6. Fita power law between FLOPs

budget and optimal dataset size

10T

1T

1L

100B

Tokens

10B

1B |~
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Chinchilla Scaling Laws

1T
—— Approach 1
1008 —— Approach 2
n — Approach 3
% 10B ---. Kaplan et al (2020)
E Y¢ Chinchilla (70B)
& 1.08 ¥¢  Gopher (280B)
% GPT-3(175B)
Y Megatron-Turing NLG (530B)
100M

10%7 10%° 102! 102 10%
FLOPs

Chinchilla findings: the exponent in the power law is ~0.5, meaning model and data size
should be scaled at the same rate! This is widely different from Kaplan et al.




Chinchilla Scaling Laws

- UNDERTRAINED!

1T
)

100B

—— Approach 1
—— Approach 2

—— Approach 3

108 ---Kaplan et al (2020)
Y¢  Chinchilla (70B)

Y Gopher (280B)

% GPT-3 (175B)

Y Megatron-Turing NLG (530B)

Parameters

1.0B

100M

1017 1019 1021 1023 1025
FLOPs

Chinchilla findings: the exponent in the power law is ~0.5, meaning model and data size
should be scaled at the same rate! This is widely different from Kaplan et al.

Consequences: Given a compute budget, models should be smaller and trained for
longer. Kaplan’s scaling laws meant that models were undertrained — which is obviously
bad given bigger models are more expensive to serve and use downstream!




Slight refinements

Approach Coeff. a where N,,; < C* Coeff. b where D, o C°

1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)

2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)

3. Parametric modelling of the loss 0.46 (0.454,0.455) 0.54 (0.542,0.543)

Kaplan et al. (2020) 0.73 0.2

Joint loss, eval fit. i A B

L(N,D) = E+ — + —.

N®  DP

To make a change, compare
baseline vs candidate laws.



The End of Scaling?

GPT-4.5 Doomers: LMSys is not the

end-all-be-all.

Llama 4 Maverick demonstrated that
ranking can be volatile and overfit to

human preference.
More importantly:

1. Better NN design still coming

2. Data from new sources being added

4 Rank (StyleCtrl)

G Andrej Karpathy & Ie]

Okay so | didn't super expect the results of the GPT4 vs. GPT4.5 poll
from earlier today g, of this thread:

¥ Question 1: GPT4.5 is A; 56% of people prefer it.
Question 2: GPT4.5 is B; 43% of people prefer it.
Question 3: GPT4.5 is A; 35% of people prefer it.
Question 4: GPT4.5 is A; 35% of people prefer it.
Question 5: GPT4.5 is B; 36% of people prefer it.

TLDR people prefer GPT4 in 4/5 questions awkward.

Llama 4 Maverick ranking dropped from #2 to #32




Better Algorithms

MoE scaling laws are better, but have
implications for token hunger. We're
running out of internet!

Table 1: Values of the fitted coefficients.

Model a a b B g 0% c

MoE 18.1 0.115 30.8 0.147 2.1 0.58 047
Dense 163 0.126 26.7 0.127 - - 047

Beta is the data-dependent exponent;

alpha is parameter.

Notice relative data hunger compared to

densel!
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Dense Model Size

At same active param count and
fixed 100B token training, MoE 64E
improves on dense




More Data Sources

o (m —2)o® s
0rs = (1 - W) v E[|e-8]"]. v-mesn
Unsurprisingly, this is where we spend most of our time, -
even as modelling people. Probably half my focus this Rum(0:0) = 1:—Lai£’(0:zi)+ :—;—i[(o:zf) + ),
year so far. - a
. Multimodal Data For appropriate alpha...
1. Audio, visual, 3D, videos, etc.
2. Synthetic Data == ‘%9
1. Without filter, it can help in the Stein’s wn 4—‘
paradox sense (Jain et al 2024) 1
2.

-
Tradeoff: Generation Quality vs. Filtering

Turn limit
reached?

Private Tests
l NO Execution
FAIL

Fublic Testsy, PASS
Execution

Inference-Time Training-Time
Execution Feedback Execution Feedback



https://arxiv.org/abs/2402.04376
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Small Model Customers



Inference Efficiency Goals
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What Motivates Being on the Pareto Frontier

+ .
Key Google Use Cases demand Ge m I n I

(1) higher volume servicing
(2) real time

All of these require Flash (+Flash-lite)

Free Tier Gemini App (chatbot)
AlO

AIM

Vertex Al (finetuning, deploying)
Al Studio (generation API) coete

1! Build, tune, and deploy
foundation models
o with Vertex Al

8¢ Google Al Studio

with Generative Al



Real-time #1: Astra

Shout out to Tara Sainath for the video!


http://www.youtube.com/watch?v=hIIlJt8JERI

Real time #2: Mariner

Project
Mariner

Anmol G.

Shout out to Anmol Gulati for the video!


http://www.youtube.com/watch?v=_uBg6syzXhk

Why Do Real-time Use Cases Imply Smaller Models

Some quick back of envelopes

e Consider a web interaction agent with:
o 128k prefill, but only 8k incremental
o 128 decode (say it takes that many tokens to get an action)
e Suppose further that we don’t want more than a second of latency
between actions.
e And say 250ms is scaffolding, load balancing, request validation, kv
cache retrieval etc. (optimistic!)

An experiment with Llama3-70B and v5e chips...
Assume fully compute bound on prefill and hbm on decode



L D F H V K E—80 8192 35*8192 64 8 128 128256
nparam = Lxk(3%DxF+2%DxKxH+2xVxDxH)/1e9 + ExD/1e9; print(f'{nparam:.1f}') # 68

bf16. Yr'ﬂops + 1-off napkin math

et S 20N SR For Llama3-70B

C, T = 128 x 1024, 5192 Inference on v5e
prefill_1chip = 2 x T % nparam / bfl16_Tflops / 1000; print(f'{prefill_flop:.1f}') # 5.7 s

Uh oh... 5.7 seconds for 1 chip. So to hit 0.5 sec api limit
we already need to have a 4x4 prefill station of v5e Audience Q: how would we shard on 4x4?

(’ per_token step (0.75 - preflll 1chip / 16) / 128 % 1000; print(f'{per_token_step:.2f}')

decode ChlpS =2x%x4
decode_memory = (2 * V % L * K % C / 1e9 + nparam) / 2
full_step = decode memory / hbm_| bw / decode_chips * 1000; prlnt( "{full_step:.2f}"')

one_query_chiptime = prefill_1chip + per_token_step * 128 / 1000 * 8




Chinchilla-style Scaling Ignores Inference Cost

FLOP
3.3 Budget

3.2

31

3.0

2.9 2e19—

Loss

How changes get adopted in classical
setting:

2.8

2.7

le20

1. Derive L*(flops) baseline

2. L*(flops) candidate s

To the right, isoflop-style - tope e
Can aISO use L(N,D) ﬁtS and 6N D. = Baseline == Candidate

3.2

3.0

pplx

flops (log scale)
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Inference-Aware Scaling



Inference-Aware Laws

N*(¢, Ding), Di:(£, Ding) =

Most direct answer to previous question: N Daff(?i}? » 6N Dy + 2N Din.
(3)

Globally optimize flops between training and . .
inference? N (£7 Dinpa Dout)a Dtr(ga Dinpa Dout) =
6N D.C D; D
arg min . + 2N Cinf np I out

_, MFU MFU; MFU
Beyond Chinchilla-Optimal: Accounting for N:De| L(N, D)=t " mp (Og;

Inference in Language Model Scaling Laws,

Sardana et al., 2024 . 1w
’ ’ ! 8 9.7x1022
! [) 8.0x1022 total FLOPs
N _??ito ______________ g total FLOPs (Chinchilla
& 73 o (Compute Optimal)
S train smaller model % k] Optimal)
on more data = Lo
2 [re 78 i g
< / 7B 3 2.8x10 =29 2.8x1022
[ SR, C femeemmeme e g
° S ] g i =
o i )
= Chinchilla: A 138 € 1 7Binference 2
optimal 1 0 | requires less 2 5.2x102
13B : s 1 compute
7.5x10% 5.2x10% 1
2x10% 78 138

Pretraining FLOPs Inference Tokens Model Parameters



https://arxiv.org/abs/2401.00448

Challenges with Inference-Aware Laws

----- =< 100 Tok/Param @ 150M
—-:= =< 250 Tok/Param e 370M
— All Data e 750M

® Empirical Data e 13B

Non-homogeneity of Compute 232
-
1. Inference-optimized chips. Also global optimization is not how 20
. c
cross-org planning actually works. ©
. .. . " . " A X:!
2. Butin principle can adjust the formulas for “business cost g
et 40
Deeper issue (1): non-forecastability of Dinf .| o ™\ oo 5
1. Jevon’s paradox. T i 10 107 10° 10"
] NN Tokens Per Parameter
2.  Market expansion — >

Consumpton of Toch more than
C (ol D Consumption

2 otal costs are higher

from quality improvements

Deeper (2): badness of fit "JVWOT?H%BSU"!" Data @ p A B E
Cous i Do <100 tok/param 0.08 0.13 7.199 2597 0.17

See Fig5/tbl1 to the right GO e
( ° ont <250 tok/param 0.13 0.16 14.23 39.54 0.98

<500 tok/param 0.13 0.16 17.07 35.80 0.95
All Data 0.18 0.24 33.66 1389 1.45

RTANCE BEING

FIRST Chinchilla 034 0.28 4064 410.7 1.69




#1: Addressing Badness of Fit
from Heavily Overtrained models



Modelling Under Data Constraints

2.8B parameters trained
for 55B tokens

8.7B parameters trained
for 178B tokens

4.2B parameters trained
for 84B tokens

Scaling Data-Constrained Language Models i

https://arxiv.org/abs/2305.16264

D was opaque and recipe-specific.

You wouldn’t be blamed for assuming iid R = B e RR S wR S ae L e a

New dimension: intentionally unique data, L(N, U, R)

piis o}
Rb).

D' =Up+UpRp(1—ce Z fitted ©)

Note that for Rp = 0 (no repetitions), D’ = Up = D. For Rp < R}, & #0/Eb ~ 1 — £2 and so
D

D' ~Up +UDR*D(1 - 1+RD/RB) = UD(1+RD) =D

Upshot: yet smaller models, more resilient to repeats.

Final test loss

Intentionally subset data

Data-Constrained Scaling Laws

Return on compute when repeating Allocating compute when repeating

B
NG 1022 FLOPs
N

3.4 o
3.2 [ E
- | L% 2
| o
| A
| *%
3.0 | — 2
", | / S
238 | P / g 8.678
—1
S / © 6348
2.6 o, =
Pooy &
24 Tt
2.2{ Upto =4 epochs
repeating is almost
50125 900d a5 new data
. 128 288 1208 4808 12T 1788 2428
1) (4) (10) (40) (100) (7.1) (9.7)
Tokens Tokens
(Epochs) (Epochs)

« % Models trained — = Regime of same compute (IsoFLOP)
Loss assuming repeated data is worth the same as new data = Efficient frontier assuming repeated data is worth the same as new data
Loss predicted by our data-constrained scaling laws meme Efficient frontier predicted by our data-constrained scaling laws



https://arxiv.org/abs/2305.16264

#2: What about Dinf?



St I I I ? Wh at Abo Ut D I nf With L(U, N, R) we can back out ideal shrunk datasets to match loss (5 epochs)

~

Llama3 : Dinf = inf! https://arxiv.org/abs/2407.21783 NN

“Both our 8B and 70B parameter models continued
to improve log-linearly after we trained them on up
to 15T tokens.” link

o
i

~28% of the flops for iso-loss

w
L

»
L

flops to reach 8B loss (1e24)

w
L

Could be quite valid for open source! Just pick sizes 20 83 90 93 o s o s

params (B)

and train on all your data! =

=—U=1T

We could be doing research with those flops! Use ~ :*
this forecast to estimate how much regret we got.
Assuming 5 epochs, data-scarce law from prev n

paper. Colab . Job is to push the curves right.


https://arxiv.org/abs/2407.21783
https://ai.meta.com/blog/meta-llama-3/
https://colab.research.google.com/drive/1g7H3y5zNTwlbyRXrJFeM24cfEz8YGikk#scrollTo=4RWHDI5APB1B

Distillation

Table 2. Scenarios considered in our scaling law applications.

Compute Scenario orst

Pre
or

Description

Adds other axes to everything we’ve discussed  ss we @y o

so far!

Will not say much here; beside the fact that
there are other dimensions now too.

amortized teacher)

Teacher inference 1

Teacher pretraining 0

Teacher pretraining + 1

0

The teacher produces no additional FLOPs and so
we are free to choose the teacher L. that mini-
mizes the student cross-entropy.

‘We don’t account for the teacher cost because the
teacher already exists, or we intend to use the
teacher as e.g. a server model. We still need to
pay to use it for distilling a student.

The teacher needs training, but we store the logits
for re-use, either during training, or after training
for distilling into sufficiently many students.

The teacher needs training and we pay for distill-
ing into one student, the worst case scenario.

Distillation Scaling Laws (Busbridge et al 2025) e

FLOPs~3F(Ns)Ds+F(Nr)(0r8 Ds+057°3Dr) (9)
N e N’

N———
Student
Training

Teacher
Logits

Teacher
Training

How to spend flops with teacher?



Student Capacity Gap?

Student Distillation Tokens Dg
e 20N 40N e 80N e 160N 320N

w Student Ng = 143M Student Ny = 198M
e - & NelL, —o—0—0—0000 L

Student cross-entropy Teacher cross-entropy = g \\ o © \\\
; ' B8, N T || NI

—c ¥ 2, ([P—e—o—o—¢ ] \
1 L \""\ " (a4 B kIR s N IR it
+F 14| &= W+—7 8) o s

N Lsd, s Ds ) O 30M 1B 3B 6B 14B 300M 1B 3B 6B 14B

o5
Student ability to mimic teacher Teacher Parameters Ny

Figure 4. Fixed M Teacher/Fixed M Student. Students of two
sizes trained with different M's = Ds/Ns = 20 ratios are dis-
tilled from teachers with Mt = D1 /Nt = 20.

Fig4, eq8
(1) very weak effect from up-trend; and not typical regime
(2)  Missing part of the story. Teacher pplx can be arbitrarily weakened by just adding temperature!
Take a really good teacher -> Eq8 predicts bad distill -> but add high temp and it will be good?
(3) Inpractice, you can James-stein this away with weight tuning with supervised objective



Distill blog post story

Distill as variance reduction. Better teacher will just reduce bias

The underlying classification problem has (X, Y) ~ B where noisy Y | X is still stochastic. One can imagine that for a logistic loss, the variance of the
training loss from n examples derived from the dataset (X, E[Y |X]) is smaller than that of the training loss from n examples of (X, Y). For a probabilistic
binary model pg parameterized by 0:

1 1
var — Z log(1 + exp(~Yipo(X)))) = var — 2 log(1 + exp(—E[Y; | Xipo(x))) ,


https://vladfeinberg.com/2024/02/04/distillation-walkthrough.html
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Closing Thoughts



Scaling Trends and Inference Implications

Scaling Work has two flavors

1. Adding points to Quality x Model Size plot
2. Increasing the slope of the plot

train flops

Gemini tick-tock (Flash goal to match Pro of previous gen)

Inference Efficiency Work: Compression work grows with both scaling
aspects

1. Development of better distillation recipes
2. Quantization
3. Serving-friendly model design changes



Future Pretrain Research Ideas — Without Big Costs!

Common refrain: pretraining is expensive, only can be researched in industry

e Developing hardware-focussed kernels is the hot-loop for research now.
Kernel programming languages, compiler tools, developer tools that make
this easier are crucial. Or come up with the next flash attention.

e Quantization entering a new frontier from vector quant

e Funsearch-style inference vs quality tradeoffs FunSearch
For LLM-in-the-loop for search. oo e
e Scaling laws are brittle, dataset dependent. %Dﬂ@ oooooooo
o L(N, D, etc.) - of course we can add - / ﬁﬂ}ﬂ -
more dims to improve fit. o [0 = 5

rrrrrrrr

Least squares vs MLE & formal stats model
Imply different scaling recommendations! Formalize.
o Rather than grid (N, D) where do we get max info gain? Active learn...




Key Resources

e Scaling Laws for Neural Language Models, Kaplan et al., 2020,

https://arxiv.org/abs/2001.08361

e Beyond Chinchilla-Optimal: Accounting for Inference in Language Model Scaling Laws,

Sardana et al., 2024, https://arxiv.ora/abs/2401.00448

e Scaling Data-Constrained Language Models, Muennighoff et al., 2023,
https://arxiv.org/abs/2305.16264
e Distillation Scaling Laws, Busbridge et al., 2025, https://arxiv.org/abs/2502.08606

e How to Scale Your Model, Austin et al., https://jax-ml.github.io/scaling-book/

e Efficiently Scaling Transformer Inference, Pope et al., 2022, https://arxiv.org/abs/2211.05102

e Unified Scaling Laws for Routed Language Models, Clark et al., 2022,
https://arxiv.org/abs/2202.01169



https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2401.00448
https://arxiv.org/abs/2305.16264
https://arxiv.org/abs/2502.08606
https://jax-ml.github.io/scaling-book/
https://arxiv.org/abs/2211.05102
https://arxiv.org/abs/2202.01169

