$$ \newcommand{\bsth}{{\boldsymbol\theta}} \newcommand{\nptime}{\textsf{NP}} \newcommand{\ptime}{\textsf{P}} \newcommand{\disteq}{\overset{d}{=}} %linalg \newcommand{\mat}[1]{\begin{pmatrix} #1 \end{pmatrix}} \newcommand{\detmat}[1]{\begin{vmatrix} #1 \end{vmatrix}} \newcommand{\spanb}[1]{\text{span}\{ #1 \}} \DeclareMathOperator{\conv}{conv} % convex hull \DeclareMathOperator{\cone}{cone} \DeclareMathOperator{\vectorize}{vec} \DeclareMathOperator{\matricize}{mat} \DeclareMathOperator{\adj}{adj} \DeclareMathOperator{\diag}{diag} \DeclareMathOperator{\tr}{tr} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator*{\argmin}{argmin} \DeclareMathOperator*{\proj}{proj} % brackets, norms, cardinalities \newcommand{\pa}[1]{ \left({#1}\right) } \newcommand{\ha}[1]{ \left[{#1}\right] } \newcommand{\ca}[1]{ \left\{{#1}\right\} } \newcommand{\inner}[1]{\left\langle #1 \right\rangle} \newcommand{\innercpy}[1]{\inner{ #1, #1 }} \newcommand{\norm}[1]{\left\| #1 \right\|} \newcommand{\abs}[1]{\left|{#1}\right|} \newcommand{\card}[1]{\left\vert{#1}\right\vert} % math vectors \newcommand{\va}{\textbf{a}} \newcommand{\vb}{\textbf{b}} \newcommand{\vc}{\textbf{c}} \newcommand{\vd}{\textbf{d}} \newcommand{\ve}{\textbf{e}} \newcommand{\vf}{\textbf{f}} \newcommand{\vg}{\textbf{g}} \newcommand{\vh}{\textbf{h}} \newcommand{\vi}{\textbf{i}} \newcommand{\vj}{\textbf{j}} \newcommand{\vk}{\textbf{k}} \newcommand{\vl}{\textbf{l}} \newcommand{\vm}{\textbf{m}} \newcommand{\vn}{\textbf{n}} \newcommand{\vo}{\textbf{o}} \newcommand{\vp}{\textbf{p}} \newcommand{\vq}{\textbf{q}} \newcommand{\vr}{\textbf{r}} \newcommand{\vs}{\textbf{s}} \newcommand{\vt}{\textbf{t}} \newcommand{\vu}{\textbf{u}} \newcommand{\vv}{\textbf{v}} \newcommand{\vw}{\textbf{w}} \newcommand{\vx}{\textbf{x}} \newcommand{\vy}{\textbf{y}} \newcommand{\vz}{\textbf{z}} \newcommand{\vzero}{\textbf{0}} \newcommand{\vone}{\textbf{1}} \newcommand{\valpha}{{\boldsymbol\alpha}} \newcommand{\vepsilon}{{\boldsymbol\epsilon}} \newcommand{\vnu}{{\boldsymbol\nu}} \newcommand{\vpi}{{\boldsymbol\pi}} \newcommand{\veta}{{\boldsymbol\eta}} \newcommand{\vsigma}{ {\boldsymbol\sigma}} \newcommand{\vbeta}{ {\boldsymbol\beta}} \newcommand{\vtheta}{ {\boldsymbol\theta}} \newcommand{\vdelta}{ {\boldsymbol\delta}} \newcommand{\vlambda}{ {\boldsymbol\lambda}} \newcommand{\vmu}{ {\boldsymbol\mu}} % common math sets \newcommand{\Z}{\mathbb{Z}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\N}{\mathbb{N}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} % limits \def\sumn{\sum_{n=0}^\infty} \def\limn{\lim_{n\rightarrow\infty}} \def\prodn{\prod_{n=0}^\infty} % mathcal \newcommand{\mcA}{\mathcal{A}} \newcommand{\mcB}{\mathcal{B}} \newcommand{\mcC}{\mathcal{C}} \newcommand{\mcD}{\mathcal{D}} \newcommand{\mcE}{\mathcal{E}} \newcommand{\mcF}{\mathcal{F}} \newcommand{\mcG}{\mathcal{G}} \newcommand{\mcH}{\mathcal{H}} \newcommand{\mcI}{\mathcal{I}} \newcommand{\mcJ}{\mathcal{J}} \newcommand{\mcK}{\mathcal{K}} \newcommand{\mcL}{\mathcal{L}} \newcommand{\mcM}{\mathcal{M}} \newcommand{\mcN}{\mathcal{N}} \newcommand{\mcO}{\mathcal{O}} \newcommand{\mcP}{\mathcal{P}} \newcommand{\mcQ}{\mathcal{Q}} \newcommand{\mcR}{\mathcal{R}} \newcommand{\mcS}{\mathcal{S}} \newcommand{\mcT}{\mathcal{T}} \newcommand{\mcU}{\mathcal{U}} \newcommand{\mcV}{\mathcal{V}} \newcommand{\mcW}{\mathcal{W}} \newcommand{\mcX}{\mathcal{X}} \newcommand{\mcY}{\mathcal{Y}} \newcommand{\mcZ}{\mathcal{Z}} % distribs, probability \newcommand{\disteq}{\overset{d}{=}} \newcommand\independent{\perp \!\!\! \perp} \DeclareMathOperator{\Laplace}{Laplace} \DeclareMathOperator{\Poisson}{Poisson} \DeclareMathOperator{\Exponential}{Exponential} \DeclareMathOperator{\Multinomial}{Multinomial} \DeclareMathOperator{\Bernoulli}{Bernoulli} \DeclareMathOperator{\Categorical}{Categorical} \DeclareMathOperator{\Uniform}{Uniform} \DeclareMathOperator{\Binomial}{Binomial} \DeclareMathOperator{\Hypergeometric}{Hypergeometric} \DeclareMathOperator{\GammaDist}{Gamma} \DeclareMathOperator{\NegativeBinomial}{NegativeBinomial} \DeclareMathOperator\sub{sub} \renewcommand{\d}[1]{\mathop{\mathrm{d} #1 }} \newcommand{\dkl}[2]{\mathop{D_\mathrm{KL}}\left({#1}\;\middle\|\;{#2}\right)} \newcommand{\sg}{\mathop{\mathrm{SG}}} \newcommand{\se}{\mathop{\mathrm{SE}}} %operators \DeclareMathOperator{\power}{{\mathcal{P}}} \DeclareMathOperator{\var}{var} \DeclareMathOperator{\cov}{cov} \DeclareMathOperator\mathProb{\mathbb{P}} \DeclareMathOperator\mathExp{\mathbb{E}} \DeclareMathOperator*\mathExpUnder{\mathbb{E}} \DeclareMathOperator*\fat{fat} \renewcommand{\P}{\mathProb} % need to overwrite stupid paragraph symbol \newcommand{\E}{\mathExp} % need to overwrite stupid paragraph symbol \newcommand{\set}[2]{ \left\{ #1 \,\middle|\, #2 \right\} } \newcommand{\CE}[2]{ \mathExp\left[ #1 \,\middle|\, #2 \right] } \renewcommand{\CP}[2]{ \mathProb\left\{ #1 \,\middle|\, #2 \right\} } $$
FAISS, Part 1FAISS is a powerful GPU-accelerated library for similarity search. It’s available under MIT on GitHub. Even though the paper came out in 2017, and, under some interpretations, the library lost its SOTA title, when it comes to a practical concerns: the library is actively maintained and cleanly written. it’s still extremely competitive by any metric, enough so that the bottleneck for your application won’t likely be in FAISS anyway. if you bug me enough, I may fix my one-line E...
FAISS, Part 2I’ve previously motivated why nearest-neighbor search is important. Now we’ll look at how FAISS solves this problem.Recall that you have a set of database vectors \(\{\textbf{y}_i\}_{i=0}^\ell\), each in \(\mathbb{R}^d\). You can do some prep work to create an index. Then at runtime I ask for the \(k\) closest vectors in \(L^2\) distance.Formally, we want the set \(L=\text{$k$-argmin}_i\norm{\textbf{x}-\textbf{y}_i}\) given \(\textbf{x}\).The main paper contributions in this rega...
Numpy Gems 1: Approximate Dictionary Encoding and Fast Python MappingWelcome to the first installment of Numpy Gems, a deep dive into a library that probably shaped python itself into the language it is today, numpy.I’ve spoken extensively on numpy (HN discussion), but I think the library is full of delightful little gems that enable perfect instances of API-context fit, the situation where interfaces and algorithmic problem contexts fall in line oh-so-nicely and the resulting code is clean, ...
Beating TensorFlow Training in-VRAMIn this post, I’d like to introduce a technique that I’ve found helps accelerate mini-batch SGD training in my use case. I suppose this post could also be read as a public grievance directed towards the TensorFlow Dataset API optimizing for the large vision deep learning use-case, but maybe I’m just not hitting the right incantation to get tf.Dataset working (in which case, drop me a line). The solution is to TensorFlow harder anyway, so this shouldn’t reall...